4 research outputs found

    The FORCE: A portable parallel programming language supporting computational structural mechanics

    Get PDF
    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor

    The FORCE: A highly portable parallel programming language

    Get PDF
    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them

    Force user's manual: A portable, parallel FORTRAN

    Get PDF
    The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed

    Force user's manual, revised

    Get PDF
    A methodology for writing parallel programs for shared memory multiprocessors has been formalized as an extension to the Fortran language and implemented as a macro preprocessor. The extended language is known as the Force, and this manual describes how to write Force programs and execute them on the Flexible Computer Corporation Flex/32, the Encore Multimax and the Sequent Balance computers. The parallel extension macros are described in detail, but knowledge of Fortran is assumed
    corecore